tensorflow detection API制作自己的数据集

在上一篇博客中我们简介了tensorflow detection API环境搭建,这篇博客主要讲述利用一个小软件来制作自己的检测数据集。

LabelImg-制作数据集

使用 LabelImg 这款小软件,标注图像。可以基于自己的任务和数据,标注出需要检测物体的bounding box,可以是一个类别也可以为多可类别。 我们以肿瘤的良恶性为例。我们需要标注出肿瘤的四个坐标。

标注完成后保存为同名的xml文件。

生成CSV文件

对于Tensorflow,需要输入专门的 TFRecords Format 格式。

写一个小python脚本文件,第一个将文件夹内的xml文件内的信息统一记录到CSV.见我的 github (还没上传)。

    # -*- coding: utf-8 -*-  
    import os  
    import glob  
    import pandas as pd  
    import xml.etree.ElementTree as ET  

    os.chdir('image 和 xml 文件路径')  
    path = 'image 和 xml 文件路径'  

    def xml_to_csv(path):  
        xml_list = []  
        for xml_file in glob.glob(path + '/*.xml'):  
            tree = ET.parse(xml_file)  
            root = tree.getroot()  
            for member in root.findall('object'):  
                value = (root.find('filename').text,  
                         int(root.find('size')[0].text),  
                         int(root.find('size')[1].text),  
                         member[0].text,  
                         int(member[4][0].text),  
                         int(member[4][1].text),  
                         int(member[4][2].text),  
                         int(member[4][3].text)  
                         )  
                xml_list.append(value)  
        column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']  
        xml_df = pd.DataFrame(xml_list, columns=column_name)  
        return xml_df  


    def main():  
        image_path = path  
        xml_df = xml_to_csv(image_path)  
        xml_df.to_csv('tumor.csv', index=None)  
        print('Successfully converted xml to csv.')  
    main()

生成tfrecord文件

从.csv表格中创建TFRecords格式,对于训练集与测试集分别运行上述代码即可,得到train.record与test.record文件。

    import os  
    import io  
    import pandas as pd  
    import tensorflow as tf  

    from PIL import Image  
    from object_detection.utils import dataset_util  
    from collections import namedtuple, OrderedDict  

    os.chdir('~\\tensorflow-model\\models\\research\\object_detection\\')  

    flags = tf.app.flags  
    flags.DEFINE_string('csv_input', '', 'Path to the CSV input')  
    flags.DEFINE_string('output_path', '', 'Path to output TFRecord')  
    FLAGS = flags.FLAGS  


    # TO-DO replace this with label map  
    #注意将对应的label改成自己的类别!!!!!!!!!!  
    def class_text_to_int(row_label):  
        if row_label == 'malignant':  
            return 1  
        elif row_label == 'benign':  
            return 2  
        else:  
            None  


    def split(df, group):  
        data = namedtuple('data', ['filename', 'object'])  
        gb = df.groupby(group)  
        return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]  


    def create_tf_example(group, path):  
        with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:  
            encoded_jpg = fid.read()  
        encoded_jpg_io = io.BytesIO(encoded_jpg)  
        image = Image.open(encoded_jpg_io)  
        width, height = image.size  

        filename = group.filename.encode('utf8')  
        image_format = b'jpg'  
        xmins = []  
        xmaxs = []  
        ymins = []  
        ymaxs = []  
        classes_text = []  
        classes = []  

        for index, row in group.object.iterrows():  
            xmins.append(row['xmin'] / width)  
            xmaxs.append(row['xmax'] / width)  
            ymins.append(row['ymin'] / height)  
            ymaxs.append(row['ymax'] / height)  
            classes_text.append(row['class'].encode('utf8'))  
            classes.append(class_text_to_int(row['class']))  

        tf_example = tf.train.Example(features=tf.train.Features(feature={  
            'image/height': dataset_util.int64_feature(height),  
            'image/width': dataset_util.int64_feature(width),  
            'image/filename': dataset_util.bytes_feature(filename),  
            'image/source_id': dataset_util.bytes_feature(filename),  
            'image/encoded': dataset_util.bytes_feature(encoded_jpg),  
            'image/format': dataset_util.bytes_feature(image_format),  
            'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),  
            'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),  
            'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),  
            'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),  
            'image/object/class/text': dataset_util.bytes_list_feature(classes_text),  
            'image/object/class/label': dataset_util.int64_list_feature(classes),  
        }))  
        return tf_example  


    def main(_):  
        writer = tf.python_io.TFRecordWriter(FLAGS.output_path)  
        path = os.path.join(os.getcwd(), 'images')  
        examples = pd.read_csv(FLAGS.csv_input)  
        grouped = split(examples, 'filename')  
        for group in grouped:  
            tf_example = create_tf_example(group, path)  
            writer.write(tf_example.SerializeToString())  

        writer.close()  
        output_path = os.path.join(os.getcwd(), FLAGS.output_path)  
        print('Successfully created the TFRecords: {}'.format(output_path))  


    if __name__ == '__main__':  
        tf.app.run() 

整理

将train.csv, test.csv, train.record, test.record文件放在object_dtection/data下

将所有的图像文件放在object_dtection/images下

至此关于肿瘤检测数据制作完毕。

打赏一个呗

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦